

GHS Safety Data Sheet

Version No:2.0 Page 1 of 15

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

MACROGOL CETOSTEARYL ETHER

PRODUCT USE

Emulsifier, cleaner, dispersant for cosmetics, esp. creams and lotions.

SUPPLIER

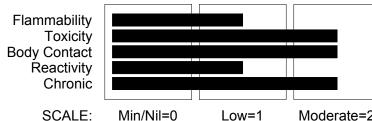
Company: S D FINE- CHEM LIMITED

Address:

315- 317, T.V.Ind.Estate,

248, Worli Road

Mumbai- 400030, India


www.sdfine.com

Telephone: 91- 22 24959898/99

Fax: 91- 22 2493 7232 Email: technical@sdfine.com

Section 2 - HAZARDS IDENTIFICATION

HAZARD RATINGS

SCALE:

Low=1 Moderate=2

High=3

Extreme=4

GHS Classification

Acute Toxicity Category 4 Eye Irritation Category 2A

Page 2 of 15
Section 2 - HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

HAZARD

WARNING

Determined by using GHS criteria

H302 Harmful if swallowed.

H319 Causes serious eye irritation.

PRECAUTIONARY STATEMENTS

Prevention

P264 Wash ... thoroughly after handling.

P270 Do not eat, drink or smoke when using this product.

P280 Wear protective gloves/protective clothing/eye protection/face protection.

Response

P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing.

P330 Rinse mouth.

P337+P313 If eye irritation persists: Get medical advice/attention.

Disposal

P501 Dispose of contents/container to ...

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN % polyoxy 20 cetostearyl (C16- 18) ether -- 100

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- · Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- · Seek medical advice.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

Page 3 of 15 Section 4 - FIRST AID MEASURES

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- · Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion.
 Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL).are applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC)
- When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with
 combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum
 Ignition Energy (the minimum amount of energy required to ignite dust clouds MIE) will be lower t
 pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the
 individual LELs for the vapors/mists or dusts

Page 4 of 15
Section 5 - FIRE FIGHTING MEASURES

- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and
 can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion
 enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and
 often initiate a much larger secondary explosion. All large scale explosions have resulted from chain
 reactions of this type.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source
- One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours).
- Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of

burning organic material. May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Page 5 of 15
Section 6 - ACCIDENTAL RELEASE MEASURES

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Overheating of ethoxylates in air should be avoided. When some ethoxylates are heated vigorously in the presence of air or oxygen, at temperatures exceeding 160 C, they may undergo exothermic oxidative degeneration resulting in self-heating and autoignition.
- Nitrogen blanketing will minimise the potential for ethoxylate oxidation.
- Trace quantities of ethylene oxide may be present in the material. Although these may accumulate in the headspace of storage and transport vessels, concentrations are not expected to exceed levels which might produce a flammability or worker exposure hazard.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- · Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

Page 6 of 15
Section 7 - HANDLING AND STORAGE

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

SUITABLE CONTAINER

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY

· Avoid reaction with oxidising agents.

STORAGE REQUIREMENTS

- Store in original containers.
- · Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

+

- +: May be stored together
- O: May be stored together with specific preventions
- X: Must not be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records polyoxy 20 cetotearyl (C16-C18) ether

CAS:-

MATERIAL DATA

ALCOHOLS C16-18 ETHOXYLATED: MACROGOL CETOSTEARYL ETHER:

■ Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this

Page 7 of 15 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- · permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

EYE

- · Safety glasses with side shields.
- · Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent].

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber

Page 8 of 15 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- P.V.C. apron.
- · Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

- •Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type:
- (c): fresh-air hoods or masks

Page 9 of 15 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Odourless white powder; mixes with water. Soluble in acetone and ethanol.

PHYSICAL PROPERTIES

Mixes with water.

State	Divided Solid	Molecular Weight	Not Applicable
Melting Range (°C)	37	Viscosity	Not Applicable
Boiling Range (°C)	Not Available	Solubility in water (g/L)	Miscible
Flash Point (°C)	>100	pH (1% solution)	Not Available
Decomposition Temp (°C)	Not Applicable	pH (as supplied)	7
Autoignition Temp (°C)	Not Applicable	Vapour Pressure (kPa)	Not Applicable
Upper Explosive Limit (%)	Not Applicable	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Applicable	Relative Vapour Density (air=1)	Not Applicable
Volatile Component (%vol)	Not Applicable	Evaporation Rate	Not Applicable

Section 10 - CHEMICAL STABILITY AND REACTIVITY INFORMATION

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Accidental ingestion of the material may be damaging to the health of the individual.

EYE

■ Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

Page 10 of 15
Section 11 - TOXICOLOGICAL INFORMATION

SKIN

- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either
- produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis.
 At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

INHALED

- Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

 If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained,

proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result

in excessive exposures.

■ Not normally a hazard due to non-volatile nature of product.

CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

TOXICITY AND IRRITATION

MACROGOL CETOSTEARYL ETHER:

■ Not available. Refer to individual constituents.

ALCOHOLS C16-18 ETHOXYLATED:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Eye: SEVERE (analogy) * Skin: not irritating * (analogy) *

■ The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

Page 11 of 15
Section 11 - TOXICOLOGICAL INFORMATION

EO > 15-20 gives Harmful (Xn) with R22-41 >20 EO is not classified (CESIO 2000)
Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin).
AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. No significant acute toxicological data identified in literature search.

* Cognis MSDS for Ceteraeth -20

Page 12 of 15

Section 12 - ECOLOGICAL INFORMATION

ALCOHOLS C16-18 ETHOXYLATED:

■ Very toxic to aquatic organisms.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For surfactants:

Environmental fate:

Octanol/water partition coefficients cannot easily be determined for surfactants because one part of the molecule is hydrophilic and the other part is hydrophobic. Consequently they tend to accumulate at the interface and are not extracted into one or other of the liquid phases. As a result surfactants are expected to transfer slowly, for example, from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolised rapidly during the process of bioaccumulation. This was emphasised by the OECD Expert Group stating that chemicals are not to be considered to show bioaccumulation potential if they are readily biodegradable.

Several anionic and nonionic surfactants have been investigated to evaluate their potential to bioconcentrate in fish. BCF values (BCF - bioconcentration factor) ranging from 1 to 350 were found. These are absolute maximum values, resulting from the radiolabelling technique used. In all these studies, substantial oxidative metabolism was found resulting in the highest radioactivity in the gall bladder. This indicates liver transformation of the parent compound and biliary excretion of the metabolised compounds, so that "real" bioconcentration is overstated. After correction it can be expected that "real" parent BCF values are one order of magnitude less than those indicated above, i.e. "real" BCF is <100. Therefore the usual data used for classification by EU directives to determine whether a substance is "Dangerous to the "Environment" has little bearing on whether the use of the surfactant is environmentally acceptable. Ecotoxicity:

Surfactant should be considered to be toxic (EC50 and LC50 values of < 10 mg/L) to aquatic species under conditions that allow contact of the chemicals with the organisms. The water solubility of the chemicals does not impact the toxicity except as it relates to the ability to conduct tests appropriately to obtain exposure of the test species. The acute aquatic toxicity generally is considered to be related to the effects of the surfactant properties on the organism and not to direct chemical toxicity. for alcohol ethoxylates

Environmental fate:

Alcohol (alkyl) ethoxylates (AEs) are generally biodegradable and do not persist for any substantial period in the environment. They are not usually present a concentrations which might produce problems. Contamination of natural waters, however, should be avoided.

The biodegradability of the alcohol ethoxylates (AE) is relatively unaffected by the alkyl carbon chain length and the number of EO units. The linear AE are normally easily degraded under aerobic conditions. Only small differences are seen in the time needed for ultimate degradation of linear AE with different alkyl chain lengths. AE with a typical alkyl chain (e.g., C12 to C15) will normally reach more than 60% degradation in standardized tests for "ready" biodegradability. The rate of biodegradation may however be determined by the length of the ethylene oxide (EO) chain. Longer EO chains decrease the bioavailability of the AE (to microorganism) due to increased hydrophilicity and molecular size, which limits the transport of the molecule through the cell wall. The biodegradation of branched AE tends to be slower than biodegradation of linear AE. The biodegradability of AE depends on degree and structure of the branching. The general trend is that the biodegradation decreases considerably with an increasing branching of the carbon chain. The biodegradability of alcohol alkoxylates (AA), similarly, generally decreases with an increasing number of PO units. AA containing 6 PO units did not pass the level required for ready biodegradability whereas the same alcohol containing 2 PO units attained 83% ThOD in the closed bottle test.

The mineralization observed in experiments with 14C-labelled surfactants suggests that almost complete degradation of linear AE may be expected in anaerobic digesters. Ecotoxicity:

Available information suggests that alcohol ethoxylates can have acute and chronic toxic effects on aquatic organisms. These effects vary by carbon chain length. Typical alcohol ethoxylate surfactant chain length

Page 13 of 15
Section 12 - ECOLOGICAL INFORMATION

ranges from 9 to 18 carbons and 3 to 8 ethoxylate groups. Toxicity generally declines as the number of ethoxylates increases

A summary of chronic toxicity data from 60 studies conducted between 1977 and 2004 on fish, aquatic invertebrates, and aquatic plant and algae species states that alcohol ethoxylates' effects on aquatic species include reduced growth rates, impaired reproduction, and reduced survival of neonates, as well as acute mortality. Alcohol ethoxylates may cause diminished growth rates and reduced cell counts in algae species at concentrations as low as 0.03 mg/L .

The concentrations at which alcohol ethoxylates lead to acute mortality in aquatic species are similar to the concentrations at which nonylphenol ethoxylates lead to acute mortality. However, alcohol ethoxylates degrade more quickly in the aquatic environment to relatively non-toxic compounds, whereas nonylphenol ethoxylate degradation typically yields nonylphenol, which is toxic as well as persistent in the aquatic environment Algae constitute the group of aquatic organisms which appears to be the most sensitive to AE. The acute toxicity of linear and branched AE to algae is in the same range with EC50 values from 0.05 to 50 mg/l. For the linear AE, the toxicity increases with increasing hydrophobe chain length of C13) and decreasing EO chain length. The toxicity of AE to algae tends to decrease with increasing degree of branching.

The acute toxicity of AE to invertebrates varies with EC50 values from 0.1 mg/l to more than 100 mg/l for the linear types and from 0.5 mg/l to 50 mg/l for the branched types. The toxicity is species specific and may vary between 0.29 mg/l to 270 mg/l for the same linear AE The most commonly used invertebrates for testing are Daphnia magna and Daphnia pulex, and they are also among the most sensitive invertebrates to AE. Apparently, the toxicity of AE to invertebrates was not related to hydrophobicity as it is the case for algae. Some AE are very toxic to invertebrates, i.e., linear AE of C12-15 EO1-8 and branched AE with a low degree of branching, i.e. < 10-25%. Branching of the alkyl chain reduces the toxicity of AE to invertebrates as also observed for algae.

The acute toxicity of AE to fish varies with LC50 values from 0.4 mg/l to more than 100 mg/l for the linear types and from 0.25 mg/l to 40 mg/l for the branched AE. For linear AE the toxicity increases with decreasing EO units. AE containing 7-11 EO groups are considered to be very toxic to fish (EC/LC50: 1 mg/l).

Of special interest are the aryl alcohol ethoxylates.

A EU Risk Assessment Report (RAR) concluded that octyl- and nonyl- phenol ethoxylates are not readily biodegradable but are inherently biodegradable.

As a group, these materials are generally toxic to fish with LC50s ranging, typically, between 1-6 mg/l. Of special concern are the following families which are classified as "Environmentally Hazardous Substances" (Dangerous Goods Class 9) by either or both the ADR (Accord Europeen Relatif au Transport International des Merchandises Dangerous par Route) and the IMDG Code (International Maritime Dangerous Goods Code). alcohols C 6-17 (secondary) with 3-6 moles of ethoxylation.

alcohols C12-15 with 1-3 moles of ethoxylation (1-6 moles of ethoxylation IMDG)

alcohols C13-15 with 1-6 moles of ethoxylation.

New aquatic data suggests that alcohols C 8-9 branched with 3-10 moles of ethoxylation alcohols C 8-9 branched with > 10 moles of ethoxylation should also be classified as 'harmful to the environment".

These alcohols may also be found linked to aromatic structures (in nonylphenol ethoxylates for example). The current consensus determines that such entities become Environmental Toxins by association.

DO NOT discharge into sewer or waterways.

Fish LC50 (96 h) Leuciscus idus 1-10 mg/l

Biodegradability:

COD: 2000 mg O2/g BOD5: 310 mg O2/g

Inhibition of bacteria in effluent: none if introduced into acclimated biological treatment facility.

Warburg test: no effect 5000 mg/l

Acute bacterial toxicity:

EC0>100 mg/l - Method: Acute bacterial toxicity according to test method OECD 209

Primary degradation: According to the requirements of the EU Mandatory Standards for Detergents 82/242 (nonionic surfactants) and 82/243 (anionic surfactants) the surfactants contained in the product are

biodegradable to at least 90% on average.

Readily and rapidly degradable. All organic substances contained in the product achieve >60% BOD/COD or CO2

Page 14 of 15
Section 12 - ECOLOGICAL INFORMATION

liberation, or >70% DOC reduction in tests of degradability. Threshold values for readily degradability (e.g. to OECD method 301are reached)

Ecotoxicity

Ingredient Persistence: Persistence: Air Bioaccumulation Mobility

Water/Soil

alcohols C16- 18 ethoxylated No Data No Data
Available Available

Section 13 - DISPOSAL CONSIDERATIONS

■ Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:

None

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: UN, IATA, IMDG

Page 15 of 15

Section 15 - REGULATORY INFORMATION

REGULATIONS

Regulations for ingredients

polyoxy 20 cetostearyl C16-C18 ether (CAS: -) is found on the following regulatory lists;

"OSPAR National List of Candidates for Substitution – United Kingdom"

No data for Macrogol cetostearyl ether

Section 16 - OTHER INFORMATION

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

The above information is believed to be accurate and represent the best information currently available to us, but does not represent any warranty expressed or implied of the properties of the product. User should make their own investigation to determine the suitability of the information for their particular purpose.

Issue date: 17-07-2018